
Chapter 2

41

How it works…

Thread run()

myThread start()
Thread

start() run()

join()

Thread synchronization with Lock and
RLock

Thread A

wait

set

Thread B

set

wait

Thread B waits
for variable 2
to be set by
Thread A

Thread A can't
set variable 1

Thread A waits
for variable 1
to be set by
Thread B

Thread A can't
set variable 2

Shared Variables

1

2

Thread-based Parallelism

42

Thread A Thread B 1 2 Thread A
1 Thread B 2

Thread A 2 Thread
B 1,

lock()

How to do it…

lock() increment() decrement()

import threading

shared_resource_with_lock = 0
shared_resource_with_no_lock = 0
COUNT = 100000
shared_resource_lock = threading.Lock()

####LOCK MANAGEMENT##
def increment_with_lock():
 global shared_resource_with_lock
 for i in range(COUNT):

Chapter 2

43

 shared_resource_lock.acquire()
 shared_resource_with_lock += 1
 shared_resource_lock.release()

def decrement_with_lock():
 global shared_resource_with_lock
 for i in range(COUNT):
 shared_resource_lock.acquire()
 shared_resource_with_lock -= 1
 shared_resource_lock.release()

####NO LOCK MANAGEMENT ##
def increment_without_lock():
 global shared_resource_with_no_lock
 for i in range(COUNT):
 shared_resource_with_no_lock += 1

def decrement_without_lock():
 global shared_resource_with_no_lock
 for i in range(COUNT):
 shared_resource_with_no_lock -= 1

####the Main program
if __name__ == "__main__":
 t1 = threading.Thread(target = increment_with_lock)
 t2 = threading.Thread(target = decrement_with_lock)
 t3 = threading.Thread(target = increment_without_lock)
 t4 = threading.Thread(target = decrement_without_lock)
 t1.start()
 t2.start()
 t3.start()
 t4.start()
 t1.join()
 t2.join()
 t3.join()
 t4.join()
 print ("the value of shared variable with lock management is %s"\
 %shared_resource_with_lock)
 print ("the value of shared variable with race condition is %s"\
 %shared_resource_with_no_lock)

Thread-based Parallelism

44

How it works…

t1 = threading.Thread(target = increment_with_lock)

t2 = threading.Thread(target = decrement_with_lock)

t1.start()
t2.start()

t1.join()
t2.join()

increment_with_lock() decrement_with_lock()
acquire()

release()

shared_resource_lock.acquire()
shared_resource_with_lock -= 1
shared_resource_lock.release()

Chapter 2

45

 acquire()
release()

 acquire()

 acquire() release()

 release() RuntimeError

 release()

There's more…

Thread synchronization with RLock
RLock()

Lock() RLock() acquire()
release() RLock()

How to do it…
Box add()

remove() execute()
execute()

RLock()

import threading
import time

Thread-based Parallelism

46

class Box(object):
 lock = threading.RLock()
 def __init__(self):
 self.total_items = 0
 def execute(self,n):
 Box.lock.acquire()
 self.total_items += n
 Box.lock.release()
 def add(self):
 Box.lock.acquire()
 self.execute(1)
 Box.lock.release()
 def remove(self):
 Box.lock.acquire()
 self.execute(-1)
 Box.lock.release()

These two functions run n in separate
threads and call the Box's methods

def adder(box,items):
 while items > 0:
 print ("adding 1 item in the box\n")
 box.add()
 time.sleep(5)
 items -= 1

def remover(box,items):
 while items > 0:
 print ("removing 1 item in the box")
 box.remove()
 time.sleep(5)
 items -= 1

the main program build some
threads and make sure it works
if __name__ == "__main__":
 items = 5
 print ("putting %s items in the box " % items)
 box = Box()
 t1 = threading.Thread(target=adder,args=(box,items))
 t2 = threading.Thread(target=remover,args=(box,items))
 t1.start()
 t2.start()

Chapter 2

47

 t1.join()
 t2.join()
 print ("%s items still remain in the box " % box.total_items)

How it works…

t1 t2 adder() remover()
RLock()

Box

class Box(object):
 lock = threading.RLock()

adder() remover() Box
Box add() remove()

lock() RLock()
acquire() release()

 Box.lock.acquire()
 #...do something
 Box.lock.release()

Thread-based Parallelism

48

Thread synchronization with semaphores

acquire() release()

acquire()

release()

Thread Thread
release
acquire

release
acquire

SEMAPHORE

SHARED
RESOURCE

1
1 0

0 -1

Chapter 2

49

Getting ready
producer()

consumer() producer()
consumer()

consumer()
producer()

How to do it…

###Using a Semaphore to synchronize threads

import threading
import time
import random

##The optional argument gives the initial value for the internal
##counter;
##it defaults to 1.
##If the value given is less than 0, ValueError is raised.
semaphore = threading.Semaphore(0)

def consumer():
 print ("consumer is waiting.")
 ##Acquire a semaphore
 semaphore.acquire()
 ##The consumer have access to the shared resource
 print ("Consumer notify : consumed item number %s " %item)

def producer():
 global item
 time.sleep(10)
 ##create a random item
 item = random.randint(0,1000)
 print ("producer notify : produced item number %s" %item)

Thread-based Parallelism

50

 ##Release a semaphore, incrementing the internal counter by one.
 ##When it is zero on entry and another thread is waiting for it
 ##to become larger than zero again, wake up that thread.
 semaphore.release()

#Main program
if __name__ == '__main__':
 for i in range (0,5) :
 t1 = threading.Thread(target=producer)
 t2 = threading.Thread(target=consumer)
 t1.start()
 t2.start()
 t1.join()
 t2.join()
 print ("program terminated")

